Navigating the maze: genetic resistance and data sharing

Laura Goodman
Cornell University
Animal Health Diagnostic Center /
NY State Veterinary Diagnostic Laboratory
laura.goodman@cornell.edu
Why do we need to genetically “predict” antimicrobial resistance in animal health?
Bacterial sequencing in vet diagnostics

- Performed on cultures (costs ~$50-200)
- Nationally harmonized lab procedures (with FDA/CDC/state health)
- Confirms species, subspecies, isolate relatedness
- Large databases mined to predict features (functional genomics):
 - Serotype
 - Virulence factors
 - Antibiotic resistance gene (ARG) profile

National CARB veterinary surveillance projects

- FDA Veterinary Laboratory Investigation and Response Network
 - 25 vet diagnostic source labs
 - ~2,000 isolates collected in 2017
 - *Salmonella* (all hosts)
 - *E. coli* (dogs)
 - *S. pseudintermedius* (dogs)
 - “Other” (2018)
 - Including whole genome sequencing on a subset (done by 5 additional vet labs) uploaded to NCBI in near real-time
 - NARMS integration
Metadata protections

Data included

- Host species
- Sample type (e.g. feces, respiratory, wound swab)
- Collection date
- State of origin
- Case type
- Lab methods

Not included

- VDL accession number
- Referring DVM
- Animal owner
- Animal name
Working towards animal health representation in the NCBI database

<table>
<thead>
<tr>
<th>Organism</th>
<th>Total isolates (10/18/18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella</td>
<td>155,509</td>
</tr>
<tr>
<td>E. Coli</td>
<td>55,400</td>
</tr>
<tr>
<td>Campylobacter jejuni</td>
<td>22,167</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>21,016</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>7,774</td>
</tr>
<tr>
<td>Staphylococcus pseudintermedius</td>
<td>272</td>
</tr>
</tbody>
</table>
Rethinking the antibiogram: The ARG heat map

Class
- β-Lactam
- Aminoglycoside
- Sulfonamide
- Tetracycline
- Phenicol
- Trimethoprim
- Fosfomycin
- Fluoroquinolone
- Antiseptic

Veterinary Salmonella

FDA Vet-LIRN, data available at ncbi.nlm.nih.gov/pathogens/
Distribution of ARGs in veterinary *Salmonella* by Distance to Human Cases

FDA Vet-LIRN, data available at ncbi.nlm.nih.gov/pathogens/
Most extreme cases highlight role of companion animals in AMR

Canine lung (2017)
- aac(3)-Iid (gentamicin)
- aadA1 (streptomycin)
- aph(3")-Ib (streptomycin)
- aph(3')-Ia (kanamycin)
- aph(6)-Id (streptomycin)
- blaCMY-2 (penicillins, amoxi-clav, cephalosporins)
- blaTEM-1 (penicillins)
- catA1 (phenicols)
- dfrA14 (trimethoprim)
- mph(A) (macrolides)
- qacL (disinfectants)
- sul2, sul 3 (sulfonamides)
- tet(B) (tetracycline)
- gyrA mutations (fluoroquinolones)

Canine lung (2018)
- aac(3)-Iid (gentamicin)
- aadA1, A2, A5 (streptomycin)
- aph(3")-Ib (streptomycin)
- aph(3')-Ia (kanamycin)
- aph(6)-Id (streptomycin)
- blaEC (cephalosporins)
- blaTEM-1 (penicillins)
- catA1, cmlA1, floR (phenicols)
- dfrA12, 17 (trimethoprim)
- Inu(F) (lincomamide)
- mph(A) (macrolides)
- qacL, qacEdelta1 (disinfectants)
- sul1, sul2, sul 3 (sulfonamides)
- tet(B, M) (tetracycline)
One Health AMR Data Sharing

- Meeting sponsored by NY Integrated Food Safety Center of Excellence held May 2018 with stakeholders vet diagnostics and public health
- NARMS and NCBI emerged as “best practice” common databases for AST, WGS, and metadata
- Importance of data integrity, security, and confidentiality
- Reducing granularity of location would allow enhanced metadata to be provided
- A tiered system with a 3rd party protector of identifiable information proposed as safeguard for confidentiality
One Health Data Sharing: next steps

- State-level pilot project
- Identify 3rd parties for tiered confidentiality
- Incorporate animal health data in NARMS from both public/academic and corporate labs
Take-home points

1. People and animals share pathogens and pathogens share genes

2. By monitoring ARGs in animal populations, we can better protect both animal and human health
Acknowledgments

Cornell University CVM
Patrick Mitchell
Renee Anderson
Brittany Chilson
Rebecca Franklin-Guild
Anil Thachil
Belinda Thompson
Lorin Warnick
François Elvinger

FDA Vet-LIRN
• Olga Ceric
• Sarah Nemser
• Renate Reimschuessel

NY Integrated Food Safety Center of Excellence
• Martin Wiedmann
• Renato Orsi
• Gen Meredith
• Andie Newman – NYSDOH

CDC NCEZID
• Megin Nichols
• Dawn Sievert
• Misha Robyn

NARMS
• Greg Tyson - FDA
• Heather Tate – FDA
• Jean Whichard - CDC

USDA APHIS NAHLN
• Beth Harris